Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.
نویسندگان
چکیده
We report on photo-thermal modulation of thin film surface plasmon polaritons (SPP) excited at telecom wavelengths and traveling at a gold/air interface. By operating a modulated continuous-wave or a Q-switched nanosecond pump laser, we investigate the photo-thermally induced modulation of SPP propagation mediated by the temperature-dependent ohmic losses in the gold film. We use a fiber-to-fiber characterization set-up to measure accurately the modulation depth of the SPP signal under photo-thermal excitation. On the basis of these measurements, we extract the thermo-plasmonic coefficient of the SPP mode defined as the temperature derivative of the SPP damping constant. Next, we introduce a figure of merit which is relevant to characterize the impact of temperature onto the properties of bounded or weakly leaky SPP modes supported by a given metal at a given wavelength. By combining our measurements with tabulated values of the temperature-dependent imaginary part of gold dielectric function, we compute the thermo-optical coefficients (TOC) of gold at telecom wavelengths. Finally, we investigate a pulsed photo-thermal excitation of the SPP in the nanosecond regime. The experimental SPP depth of modulation obtained in this situation are found to be in fair agreement with the modulation depths computed by using our values of gold TOC.
منابع مشابه
Channel plasmon-polariton guiding by subwavelength metal grooves.
We report on realization of channel plasmon-polariton (CPP) propagation along a subwavelength metal groove. Using imaging with a near-field microscope and end-fire coupling with a tapered fiber connected to a tunable laser at telecommunication wavelengths (1425-1620 nm), we demonstrate low-loss (propagation length approximately 100 microm) and well-confined (mode width approximately 1.1 microm)...
متن کاملEfficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths
The excitation of surface plasmon-polariton SPP waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element meth...
متن کاملSelf-phase-modulation of surface plasmon polaritons
We present an approach for calculating the nonlinear propagation of surface plasmon polaritons in onedimensional planar waveguides consisting of a metal slab or a semi-infinite metal bounded by linear dielectrics, starting with an assumed third-order nonlinearity that characterizes the nonlinear response of the metal. With this approach we model the self-phase-modulation of surface plasmon pola...
متن کاملSurface Plasmon Waves on noble metals at Optical Wavelengths
In this paper the variation of the propagation constant, the attenuation coefficient, penetration depth inside the metal and the dielectric has been evaluated. The propagation characteristics of Surface Plasmon Waves (SPWs) which exists on noble metals like gold (Au), silver (Ag) and aluminium (Al) due to the formation of Surface Plasmon Polaritons (SPPs), have been evaluated theoretically and ...
متن کاملTriangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths.
We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass-production compatible offering large-scale parallel fabrication of plasmonic components, is developed. Using scanning near-field optical imaging at the wavelengths in the range of 1.43-1.52 microm, we de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 21 19 شماره
صفحات -
تاریخ انتشار 2013